Fluid flow
Talán Csaba Gábor
University of Pécs
Department of Biophysics
2012.12.09.

Fluids
- Fluids – continually deform (flow) under shear stress
 - Liquid
 - Gas
 - Plasma
- Liquids
 - Short-range crystalline organisation that always reforms
 - Constant volume, incompressible
 - Moderate resistance to deformation: fit the shape of solid surrounding (container) or force field
 - No preferred direction

Fluid mechanics
- Hydrostatics (resting fluids)
- Hydrodynamics (moving fluids)
 - Ideal fluids (no internal friction)
 - Real (viscous) fluids
 - Newtonian fluids
 - Non-Newtonian fluids
- Flow
 - Laminar flow
 - Turbulent flow
 - Stationary flow (equal amounts of mass or volume through the cross section in a unit of time)
 - Changing in time

Pascal’s law
\[p = \frac{F}{A} \]
\[W = p \cdot \Delta V \]
Fluids are incompressible:
\[A_1 \cdot d_1 = A_2 \cdot d_2 \]
\[p_1 \cdot A_1 \cdot d_1 = W_1 = W_2 = p_2 \cdot A_2 \cdot d_2 \]
\[\frac{p_1}{p_2} = \frac{A_2}{A_1} = \frac{A_1}{A_2} = F_1 < F_2 \]
Pressure exerted anywhere on a fluid in a confined space is transmitted to an equal extent in all directions.

Hydrostatic pressure
- In a gravitation field, pressure is proportional to height (depth) because of the weight of the fluid column.
\[F = \dot{G} = m \cdot g \]
\[p = \frac{F}{A} = \frac{m \cdot g}{A} = \rho \cdot V \cdot g \frac{A}{A} = \rho \cdot A \cdot g = \rho \cdot h \cdot g \]

- If also atmospheric pressure is considered:
 \[p = p_{\text{atm}} + \rho \cdot h \cdot g \]

1 mmHg (1 Torr) = 133.3 Pa
1 atm = 101 325 Pa = 101 kPa
- For interconnected fluids in equilibrium:
 \[p_1 = p_2 \quad \rho_1 \cdot h_1 \cdot g = \rho_2 \cdot h_2 \cdot g \quad \frac{h_1}{h_2} = \frac{\rho_2}{\rho_1} \]
- Independent of the fluid’s shape
Law of Archimedes

- Objects immersed in fluid lose weight

\[F = p \cdot A = \rho \cdot g \cdot h \]

Law of continuity

- Fluids are incompressible
- In \(\Delta t \) time the flow volume through any cross-section is the same:

\[\dot{V} = \frac{\Delta V}{\Delta t} \]

Bernoulli's law

- Potential energy:

\[\Delta (m \cdot g \cdot h) = m \cdot g \cdot h_2 - m \cdot g \cdot h_1 \]

\[p_1 \cdot \Delta V + \frac{1}{2} \rho \cdot v_1^2 + m \cdot g \cdot h_1 = p_2 \cdot \Delta V + m \cdot g \cdot h_2 + \frac{1}{2} \rho \cdot v_2^2 \]

Flow

- Movement of fluids in one direction
- Driving force is the pressure difference
- Foundational axioms: conservation laws (mass, energy, momentum)
- Continuum assumption
 - Fluids are continuous matter rather than made up of molecules.
 - Physical properties are well-defined at infinitesimal points, and vary continuously from one point to another.
- Intensity of current or volumetric flow rate

\[\dot{V} = \frac{\Delta V}{\Delta t} \]

Bernoulli's law in real fluids

- Laminar flow in real fluids
- For rigid tubes, ideal fluids and stationary flow: (conservation of mass)

\[I = \dot{A} \cdot \dot{y} \]

Laminar flow in real fluids

- Constant cross-section
- Pressure decreasing in the direction of flow
- Proportional to distance
- Fluid resists to the moving effect (flow) with a force
- An internal friction between imaginary fluid layers sliding past each other — decreasing displacement profile

VISCOSITY
Newton's law

\[\text{shear stress} = \frac{F}{A} \]

\[\text{strain rate} = \frac{\Delta \varepsilon}{\Delta t} \]

\[\text{viscosity} = \frac{\text{shear stress}}{\text{strain rate}} \]

\[\frac{N}{m^2} \times \frac{m}{s} = \frac{N}{s} \]

\[F = \eta \frac{\Delta v}{\Delta x} \]

Isaac Newton (1643-1727, ENG)

- Viscosity depends on matter, temperature, concentration, pressure
- Ideal fluid: zero viscosity (e.g., certain liquid He species)
- Newtonian fluid (e.g., water):
 - Viscosity = shear stress
- Non-Newtonian fluid (e.g., blood):
 - Viscosity not proportional only to shear stress
 - It depends on flow velocity
- Viscosity of gases increases at higher temperatures, that of fluids decreases

Hagen-Poiseuille law

Force because of pressure difference = frictional force (laminar, stationary flow, rigid tube)

\[\Delta p \cdot A = (p_1 - p_2) \cdot A = F = -\eta \cdot \frac{\Delta v}{\Delta t} \]

\[\Delta p = \frac{F}{A} \]

\[\frac{p_1 - p_2}{L} = \frac{\rho \cdot \Delta v}{R^4} \]

Gotthilf Hagen (1797-1884, GER)
Jean Poiseuille (1797-1869, FRA)

- Laminar flow
 - Low speed
 - No swirling
 - On smooth surface
- Turbulent flow
 - High speed for viscosity
 - Swirling, no "layers"
 - On rough surface (blood vessels)
- Reynolds number
 \[R = \frac{\rho \cdot u \cdot L}{\eta} \]

Osborne Reynolds (1842-1912, IRE)

Critical velocity for smooth tubes

\[R_{crit} \approx 1160 \]

- Hydrostatic resistance

- A medium (gas or liquid) exerts an opposite force to the direction of the movement on the objects moving in it:

\[F = \frac{1}{2} \rho \cdot A_r \cdot v^2 \]

- Streamline bodies (small k):
 - Flow layers unite behind the object, low resistance
- Non-streamline bodies (great k):
 - The medium flows rapidly behind the object
 - Low pressure → suction effect → great counter-force

- Terminal (settling) velocity

\[\frac{F_{sett}}{F} = \frac{\Delta p}{\rho \cdot g \cdot r^2} \]

\[\frac{F_{sett}}{F} = \frac{\Delta p}{\rho \cdot g \cdot r^2} \]

George Stokes (1819-1903, IRE)

- Movement of bodies in real fluids
- Frictional force on moving sphaerical objects:

\[F_{friction} = \frac{1}{2} \rho \cdot A_r \cdot v^2 \]

- Terminal (settling) velocity

\[v = \frac{2}{9} \left(\frac{\rho_{air} - \rho_{water}}{\rho_{water}} \right) g \cdot r^2 \]

2015.11.12.

<table>
<thead>
<tr>
<th>\text{material}</th>
<th>T [°C]</th>
<th>η [Pa·s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>air</td>
<td>0</td>
<td>1.79*10^{-6}</td>
</tr>
<tr>
<td>ethanol</td>
<td>20</td>
<td>1.29*10^{-3}</td>
</tr>
<tr>
<td>water</td>
<td>20</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>mercury</td>
<td>20</td>
<td>0.017</td>
</tr>
<tr>
<td>blood</td>
<td>37</td>
<td>1.28*10^{-3}</td>
</tr>
<tr>
<td>honey</td>
<td>20</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>asphalt</td>
<td>20</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>glass</td>
<td>20</td>
<td>10^{-3}</td>
</tr>
</tbody>
</table>
Summary

- Pascal's law: transmission of pressure
- Continuity equation: relationship of surface and flow velocity
 \[\frac{V}{V} = \text{constant} \]
- Bernoulli's law: relationship of pressure and velocity
 \[\frac{p}{\rho} + \frac{V^2}{2g} + h = \text{constant} \]
- Newton's law: internal friction
 \[F = \rho \cdot A \cdot \frac{dV}{dt} \]
- Hagen-Poiseuille law: flow of real fluids
 \[Q = \frac{\pi r^4}{8\eta L} \]
- Reynolds-number: critical velocity of the turbulent flow
 \[\frac{V_c}{v} \]
- Stokes' law: objects moving in a medium

THANK YOU FOR ATTENTION!

Torrerelli's law

Specific case of Bernoulli's law

- At the top and at the opening: \(p = p_{\text{atm}} \)
- At the top: \(v = 0 \) at the opening: \(h = 0 \)
 \[\rho \cdot g \cdot h + p_{\text{atm}} = \rho \cdot \frac{V^2}{2g} + p_{\text{atm}} \]
 \[v = \sqrt{2 \cdot g \cdot h} \]

Evangelista Torricelli (1608-1647, ITA)

Venturi effect

- Flow through a constriction
- Gain in kinetic energy
- Loss in pressure
- Parfume spray, chimney

Giovanni Venturi (1746-1822, ITA)