Waves

Periodic

in time (oscillation)

in space (travels, propagates)

Properties

1. **Period**, \(T (s) \) - time of 1 cycle
2. **Frequency**, \(f = \frac{1}{T} \) \((1/s = \text{Hz})\) - cycles per second
3. **Wavelength**, \(\lambda (m) \) - distance from peak to peak
4. **Speed**, \(v (m/s) \)
 \[v = \frac{\lambda}{T} = 2f \]
5. **Amplitude**, \(A (?) \)
Electromagnetic waves / light

- Electric field (E)
- Magnetic field (B)

$E \perp$ propag.
$B \perp$ propag.

Transversal wave
Electromagnetic Spectrum

\[\lambda \uparrow \]

- radio waves
- microwaves
- infrared (IR)
- visible light
- ultraviolet (UV)
- x-rays
- gamma-rays

\[\downarrow f, E \]

red, 700 nm
violet, 400 nm
WAVE PHENOMENA OF LIGHT

1) Diffraction

no diffraction diffraction

\[d \gg \lambda \]

\[d \approx \lambda \]
2) Interference

- optical grid
 - dense lines ~ 500 lines/mm
- bright
- dark
Polarized light

Light is a transversal wave.

Monochromatic light

Polarized light

Polarizer

Perpendicular propagation

No light