The photoelectric effect

BIOPHYSICS 1 — LECTURE

László Grama
The experiment

What was changed:
1. Color of light (λ, f)
2. Intensity of light (I_{light})

What was studied:
1. Number of electrons
2. Speed/kinetic energy of e^-

Electronvolt

$E_K = eV_{\text{stop}}$ ($I = 0$)
Results

<table>
<thead>
<tr>
<th>Predictions of classical theory</th>
<th>Experimental result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{\text{light}} \uparrow \rightarrow E_k \uparrow (v \uparrow))</td>
<td>(I_{\text{light}} \uparrow \rightarrow N_e \uparrow) (E_k)-did not change</td>
</tr>
<tr>
<td>(f \uparrow \rightarrow \text{no effect})</td>
<td>(f \uparrow \rightarrow E_k \uparrow)</td>
</tr>
<tr>
<td>at any (f) (color)</td>
<td>only if (f > f_0) (cutoff frequency)</td>
</tr>
<tr>
<td>delay</td>
<td>instantaneous (\text{(same moment)})</td>
</tr>
</tbody>
</table>

![Visible light diagram](image)
Einstein's theory

Light is made of photons (packets of energy, $E = hf$).

Photoelectric effect

1 photon is absorbed by 1 electron

energy = $hf = \phi + E_k$

(binding energy) (kinetic energy)

(escape)

1. Intensify \uparrow \rightarrow more photons ($N_{\text{photons}} \uparrow$) \rightarrow $N_e \uparrow$
2. $f \uparrow$ \rightarrow $E_{\text{photon}} = hf \uparrow$ \rightarrow $E_k \uparrow$
3. $hf_0 = \phi + 0$, $f < f_0$ \rightarrow $hf < \phi$
4. Photon = concentrated energy